Digital design
Total results returned: 1
The Digital Design page serves as a hub for resources exploring the cutting-edge tools and technologies reshaping electric vehicle development. With access to reports, scientific papers, and case studies, this section highlights the growing role of virtual simulations, digital twin models, and advanced software in the design process. Whether you're researching how digital tools are accelerating design iterations or improving product quality, these materials provide essential information to support innovation in the EV digital design landscape.
Conditional Generative Adversarial Network Aided Iron Loss Prediction for High-Frequency Magnetic Components
This article tackles the complex challenge of predicting magnetic iron losses in high-frequency magnetic components by introducing a novel conditional generative adversarial network model. Diverging from traditional loss prediction methodologies that often overlook intricate interactions of factors, our conditional generative adversarial network framework is designed to comprehensively incorporate diverse aspects such as material properties, geometrical variations, and environmental conditions. To facilitate this advanced approach, a specialized four-wire measurement kit was employed, which significantly enriched the training dataset with a wide range of measurements. When benchmarked against conventional deep neural network models, the conditional generative adversarial network not only achieves faster convergence but also demonstrates markedly superior accuracy in predicting iron losses. This superiority is particularly notable in scenarios that extend beyond the training data's range, underscoring the model's robustness and adaptability. Such advancements in predictive accuracy and efficiency represent a significant leap forward in the design and optimization of high-frequency magnetic components.
Artificial Intelligence Professionals, Automotive Component Manufacturers, Automotive Component Suppliers, Automotive Designers, Automotive Engineers, Circular Economy Experts, Digital Design Professionals, Electric Vehicle Manufacturers
Conditional Generative Adversarial Network, Deep Neural Network, E-Volve Cluster, High-Frequency Magnetic Components, Multilayer Perceptron, POWERDRIVE, Volumetric Iron Losses
Link:
IEEE Xplore