Vehicle Design
Total results returned: 3
The Electric Vehicle Design page hosts a collection of resources aimed at exploring the evolving architecture of electric vehicles. Featuring reports, research papers, and industry insights, this section delves into how EV design is transforming traditional vehicle structures, from battery placement to lightweight materials and aerodynamics. Whether you're focused on the technical or aesthetic aspects of EV design, these materials provide a wealth of knowledge to help shape the future of electric vehicle innovation.
Design and optimisation of energy-efficient PM-assisted synchronous reluctance machines for electric vehicles
The design and optimisation of a permanent magnet-assisted synchronous reluctance (PMaSynR) traction machine is described to improve its energy efficiency over a selection of driving cycles, when installed on a four-wheel-drive electrically powered vehicle for urban use, with two on-board powertrains. The driving cycle-based optimisation is defined with the objective of minimising motor energy loss under strict size constraints, while maintaining the peak torque and restricting the torque ripple. The key design parameters that exert the most significant influence on the selected performance indicators are identified through a parametric sensitivity analysis. The optimisation brings a motor design that is characterised by an energy loss reduction of 8.2% over the WLTP Class 2 driving cycle and 11.7% over the NEDC and Artemis Urban driving cycles, at the price of a 4.7% peak torque reduction with respect to the baseline machine. Additional analysis, implemented outside the optimisation framework, revealed that different coil turn adjustments would reduce the energy loss along the considered driving cycles. However, under realistic size constraints, the optimal design solutions are the same.
Automotive Designers, Automotive Engineers, Electric Powertrain Researchers, EV Manufacturers
Electric Vehicle Design, Modelling and Optimization
In this paper a new design model of the electric vehicle is presented. This model is based on the combination of Modelica with ModelCenter. Modelica has been used to model and simulate the electric vehicle and ModelCenter has been used to optimize the design variables. The model ensures that the requirements related to driving distance and acceleration are fulfilled.
Automotive Designers, Automotive Engineers, Electric Vehicle Manufacturers, Environmental Policy Makers, Researchers in Automotive Technology, Simulation and Modelling Professionals
Link:
researchgate.net
Electromagnetic and Performance. Design Report of Motor for Class A+B Vehicles
In this document the work carried out as part of the HEFT project with regards to the deveopment of an ultra-light motor design for segment A+B. The multi-layer rotor topology makes possible to reduce de usage of permanent magnet leading to an important saving in the rare earth elements. Wave winding techcnology allows to develop compact and efficient stator. End winding length is reduced and high frequency losses are reduced in the copper. Involving all these techonologies a high power density motor is developed.
In this document the following issues will be covered:
1. Design Process (Design Methodology and Procedure to motor performances evaluation).
2. Preliminary sizing of the motor.
3. Optimization of the rotor
4. Continuous service evaluation.
5. Final performances evaluation and KPIs computation.
Automotive Engineers, Electric Vehicle Manufacturers, Environmental and Energy Efficiency Experts, Motor Design Engineers, Renewable Energy Advocates
E-Volve Cluster, Electromagnetic Design, Electromagnetic Performance, HEFT, High Power Density, Optimization, Rare Earth Elements, Recyclability, Rotor Topology
Link:
Full Document