Vehicle Design
Total results returned: 2
The Electric Vehicle Design page hosts a collection of resources aimed at exploring the evolving architecture of electric vehicles. Featuring reports, research papers, and industry insights, this section delves into how EV design is transforming traditional vehicle structures, from battery placement to lightweight materials and aerodynamics. Whether you're focused on the technical or aesthetic aspects of EV design, these materials provide a wealth of knowledge to help shape the future of electric vehicle innovation.
Design and optimisation of energy-efficient PM-assisted synchronous reluctance machines for electric vehicles
The design and optimisation of a permanent magnet-assisted synchronous reluctance (PMaSynR) traction machine is described to improve its energy efficiency over a selection of driving cycles, when installed on a four-wheel-drive electrically powered vehicle for urban use, with two on-board powertrains. The driving cycle-based optimisation is defined with the objective of minimising motor energy loss under strict size constraints, while maintaining the peak torque and restricting the torque ripple. The key design parameters that exert the most significant influence on the selected performance indicators are identified through a parametric sensitivity analysis. The optimisation brings a motor design that is characterised by an energy loss reduction of 8.2% over the WLTP Class 2 driving cycle and 11.7% over the NEDC and Artemis Urban driving cycles, at the price of a 4.7% peak torque reduction with respect to the baseline machine. Additional analysis, implemented outside the optimisation framework, revealed that different coil turn adjustments would reduce the energy loss along the considered driving cycles. However, under realistic size constraints, the optimal design solutions are the same.
Automotive Designers, Automotive Engineers, Electric Powertrain Researchers, EV Manufacturers
Review of the Methods to Optimize Power Flow in Electric Vehicle Powertrains for Efficiency and Driving Performance
This paper provides an extensive review on the latest works carried out to optimize the power flow in EV powertrains using multispeed discrete transmission, continuously variable transmission and multi-motor configurations. The relevant literatures were shortlisted using a keyword search related to EV powertrain in the ScienceDirect and Scopus databases. The review focused on the related literatures published from 2018 onwards. The publications were reviewed in terms of the methodologies applied to optimize the powertrain for efficiency and driving performance. Next, the significant findings from these literatures were discussed and compared. Finally, based on the review, several future key research areas in EV powertrain efficiency and performance are highlighted.
Automotive Engineers, Automotive Industry Policymakers, Automotive Transmission Specialists, Battery Technology Developers, Electric Motor Manufacturers, Electric Vehicle Manufacturers, Electric Vehicle Powertrain Designers, Mechanical Engineering Researchers, Sustainability Consultants, Vehicle Dynamic Engineers
Continuously Variable Transmission, Electric Vehicle Powertrain, Four-motors Configuration, Multispeed Discrete Transmission, Two-motors Configuration
Link:
researchgate.net