Powertrain modularity

Total results returned: 1

Welcome to the Powertrain Modularity and Integration page, your central resource for exploring the latest advancements in electric vehicle powertrain systems. This page houses a curated collection of reports, scientific papers, and other key materials that delve into modular powertrain architectures, their benefits for EV performance, and streamlined integration processes. Whether you're researching flexible design approaches or seeking insights into how modularity can improve efficiency and reduce costs, these resources provide valuable information to support your work in advancing electric mobility.

Powertrain Modularity & Integration

Inherently Decoupled Dc-Link Capacitor Voltage Control of Multilevel Neutral-Point-Clamped Converters

This paper derives and discusses the superiority of a simple dc-link capacitor voltage control configuration for multilevel neutral-point-clamped converters with any number of levels. The control involves n − 2 control loops regulating the difference between the voltage of neighbor capacitors. These control loops are inherently decoupled, i.e., they are independent and the control action of one loop does not affect the others. This method is proven to be equivalent to previously published approaches, with the added advantages of increased simplicity and scalability to a higher number of levels, all while imposing a lower computational burden. The good performance of such control is confirmed through simulations and experiments.

Audience:
Electrical Engineers, Electronic Suppliers and Manufacturers, EV Manufacturers, Power Electronic Engineers