Powertrain modularity

Total results returned: 2

Welcome to the Powertrain Modularity and Integration page, your central resource for exploring the latest advancements in electric vehicle powertrain systems. This page houses a curated collection of reports, scientific papers, and other key materials that delve into modular powertrain architectures, their benefits for EV performance, and streamlined integration processes. Whether you're researching flexible design approaches or seeking insights into how modularity can improve efficiency and reduce costs, these resources provide valuable information to support your work in advancing electric mobility.

Powertrain Modularity & Integration

Report on the EM-TECH Integrated Electric Motors, Electric Drives, and Associated Controllers

The target of this deliverable is to define the basic sizes (continuous and peak torque and power ratings, mass, expected available packaging envelopes) of the investigated components and systems for case studies. Furthermore, a set of integrated EM-TECH corner modules and on-board electric drive solutions for electric vehicles are defined to cover the widest possible range of vehicle segments. This deliverable also describes the associated machine control such as the cooling control and the inverter control for the new machines, and the vehicle controls to exploit the benefits to vehicle performance brought by the new machines, including the wheel slip control, the motor regenerative braking and braking blending, and the anti-jerk control.

Audience:
Automotive Engineers, Electric Propulsion Researchers, Electrical Engineers, Electronic Suppliers and Manufacturers, EV Manufacturers, Power Electronic Engineers
Powertrain Modularity & Integration

Fault Tolerant Control of SiC/GaN Power Converters

This document describes fault-tolerant control strategies for the SiC/GaN power converter and the eMotor of the RHODaS integrated motor drive (IMD). It outlines control levels within the proposed IMD, details fast response strategies for critical faults managed by the power converter control and defines fault-tolerant control to be implemented by cloud/edge computing for the IMD. The document also addresses potential faults in the power converter and electric motor, discussing feasible fault detection strategies.

Audience:
Automotive Industry Professionals, Control Systems Developers, Electrical Engineering Researchers, Electrical Engineers, Power Electronics Researchers